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1. 

The first mode natural frequency, stiffness and deflection profile can be used to describe
the performance of a fly rod. An unloaded rod responds at its natural frequency; rods
with higher natural frequencies are described by anglers as rods with faster response.
Rod stiffness is a measure of its resistance to tip loads which produce bending.
Generally stiffer rods are chosen when angling for larger fish. Rods with low butt flex
and high tip flex have been considered by anglers as rods with high action. In 1961,
the American Fishing Tackle Manufacturers Association set a standard for flylines
based on the weight of the first 30 feet of the flyline (Cairns [1]). Today, fly rods are
typically labeled with a line weight rating indicating the recommended line weight for
use with that rod.

Several recent studies have investigated fly rod performance. Spolek [2] showed a 40%
variation in natural frequency values and a 88% variation in stiffness values for 9 ft–6
weight fly rod blanks from different manufacturers. Spolek [3] proposed that
manufacturers use a rating system which describes the stiffness and natural frequency of
fly rods. Considering rods of a given length and line weight rating, Spolek [4] found that
rods with higher natural frequencies have higher line speeds and may be best for long casts,
whereas rods with lower natural frequencies may be best for delicate presentations. In a
photographic analysis, Robson [5] found mathematical representations for the motion of
the butt of a fly rod during a cast. Hoffmann and Hooper [6] developed a numerical model
which predicts the performance of rod blanks as a function of the design parameters. They
also present an empirical correlation which relates the line weight rating of a fly rod to
the stiffness and frequency of the rod.

In this study, a semi-empirical equation is presented which can be used to predict
the first mode natural frequency of fly rods and fly rod blanks as a function of the
stiffness to mass ratio and a mass distribution parameter. The equation may be applicable
to other multi-piece tapered cantilever beams, examples of which include flag poles and
antennas.

2.  

Rod stiffness, the first mode natural frequency and rod tip section mass were obtained
for five rod blanks and 19 fly rods. A detailed description of the test procedure has been
presented by Hooper [7].

Rod stiffness and natural frequency values were obtained by placing the rod butts
horizontally in a 28 cm clamp (see Figure 1). For rods with handles longer than 28 cm,
overlap occurred on the butt end of the rod so keep the rod handle portion of the rod
rigid. The clamp was adjusted to keep the rod butt and tip at the same elevation. Tip loads
were applied and a third order polynomial equation of the P–yt curve was used to obtain
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the tip load required to obtain a tip deflection of L'/4 and rod stiffness. To obtain the
natural frequency, the rod was tapped to obtain a small deflection vibration. The use of
a photoelectric cell which responded to reflection from a light beam aimed at the rod tip,
connected to an oscilloscope allowed measurement of the natural frequency of the rod.

Tip section mass was obtained with the use of a digital laboratory balance. Values of
xcg were obtained by moving the rod tip section(s) on a fulcrum until the balance point
was obtained. The distance from the rod tip to the balance point and the length of the
tip section(s) were measured with a tape measure.

Uncertainties for the measurements, obtained using the method of Kline and
McClintock [8] with 20:1 odds, are: stiffness 23%, natural frequency 25% and mass
21%.

3.  

Mark’s equation [9] for the first mode natural frequency of a tapered cantilever beam
and an equation for the deflection of a cantilever beam with an applied tip load are
presented below. The equations are valid for small tip deflections; the parameters c1, c2,
c3, c4, and C are dependent upon the mass distribution of the rod:

f= c1zEIg/L'3/L'Ag, yt =PL'3/c3EI, (1, 2)

where L'Ag=M'c2. If the rod stiffness (S) is defined as Pt /yt when yt =L'/4, then

S= c3EI/L'3. (3)

Combining equations (1) and (3), the first mode natural frequency is shown to be a
function of the mass distribution parameter and the stiffness to mass ratio of the rod,

f= c4zS/M'. (4)

In this study, equation (5) is used in place of equation (4) because the mass of the tip
section(s) is easy to obtain for rods and rod blanks without rod destruction:

f (Hz)=CzS (g/cm)/Mt (g). (5)

Barten [10], Parthap and Varadan [11], Takahashi [12], Verma and Murthy [13] and
Hoffmann and Hooper [6] all found that the natural frequency of cantilever beams was
essentially independent of amplitude of tip deflection for deflections less than L'/4.

Figure 1. Experimental system.
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Figure 2. Natural frequency correlation: w, rod blanks; q, rods.

4.    

Data for 19 graphite fly rods and 5 graphite rod blanks is presented in Table 1. In
equation (5), the mass distribution parameter was found to vary as much as 211% for
two, three or four piece rods, and this variation was found to correlate with the location
of the center of gravity of the tip section(s) of the rods and rod blanks. Rods with more
massive ferrules have larger values of C. Equation (5) was found to predict the natural
frequency of both fly rods and rod blanks within 26%, close to the uncertainty of the
measurements, with the relationships for C presented below.

For the case of two piece rods, C=28·7(xcg /Lt )−7·8; Mt , xcg and Lt were obtained for
the tip section of the rod. For the case of three piece rods, C=28·7(xcg /Lt )−5·2; Mt , xcg

and Lt were obtained for the top two sections of the rod. For the case of four piece rods,
C=28·7(xcg /Lt )−7·3; Mt , xcg and Lt were obtained for the top two sections of the rod.

A curve of the natural frequency versus CzS/Mt is presented in Figure 2. Equation
(5) is a generalized semi-empirical equation and is independent of rod length, rod material,
line weight rating and rod manufacturer. It allows the consumer and manufacturer to
evaluate the response of fly rods with simple tests to evaluate stiffness, tip section mass
and tip section center of gravity.

For the case of uniform area cantilever beams, the relationships presented above for two,
three and four piece rods were used to obtain values of C=6·55, 9·15 and 7·05,
respectively, using xcgLt =0·5. Corresponding values of C=7·10, 8·30 and 7·10 were
calculated using equations 1, 3, and 5 with Lt =0·55L' for two and four piece rods,
Lt =0·75L' for three piece rods, a value of c1 =0·56 obtained from Marks [9], a value of
c2 =1 for a constant area rod, a value of c3 =3 for low deflection tip loaded cantilever
beams, and a value of S 11·5% larger than the low deflection stiffness (obtained
numerically by Hooper [7] for a constant area rod). Although the relationships for C were
fitted to data for fly rods, the calculated values of C for uniform area rods are within 9%
of the relationships presented above.



1. W. C 1974 Fly Casting with Bill Cairns. Lexington, Ma: Stone Wall Press, p. 102.
2. G. A. S 1993 Fly Fisherman Magazine Dec., 42–45. Fly rod action quantified.
3. G. A. S 1988 The American Fly Fisher 14, 2–9. Where the action is: part II.



    541

4. G. A. S 1993 Advances in Bioengineering American Society of Mechanical Engineers BED
26, 251–254. Fly rod performance.

5. J. B. R 1990 American Journal of Physics 58, 234–240. The physics of fly casting.
6. J. A. H and M. R. H 1997 American Society of Mechanical Engineers Design

Engineering Technical Conferences, DETC97/VIB-4070. Fly rod performance and line selection.
7. M. R. H 1997 M.S. Thesis, California Polytechnic State University, San Luis Obispo. Large

deflection stiffness and vibration analysis of slender tapered rods.
8. S. J. K and F. A. MC 1953 Mechanical Engineering, 3–8. Describing uncertainties

in single sample experiments.
9. L. S. M 1951 Mechanical Engineer’s Handbook. Fifth edition, pp. 498–499.

10. H. J. B 1944 Quarterly Journal of Applied Mathematics 2, 168–171. On the deflection of
cantilever beams.

11. G. P and T. K. V 1977 Journal of Sound and Vibration 55, 1–8. Non-linear
vibrations of tapered cantilevers.

12. K. T 1979 Journal of Sound and Vibration 64, 31–34. Non-linear free vibrations of
inextensible beams.

13. M. K. V and A. V. K. M 1974 Journal of Sound and Vibration 33, 1–12. Non-linear
vibrations of non-uniform beams with concentrated masses.



A cross-sectional area of rod at beginning of flexible portion of rod
C, c parameters dependent upon the mass distribution of the rod
E modulus of elasticity of rod material
f first mode natural frequency of rod
g gravitational constant
I moment of inertia of rod at beginning of flexible portion of rod
L rod length
L' length of flexible portion of rod or rod blank
M' mass of flexible portion of rod or rod blank
Mt mass of tip section(s) of rod or rod blank
P static tip force
Pt static tip force to obtain a rod tip deflection of L'/4
S rod stiffness parameter=Pt /(L'/4)
xcg distance from rod tip to center of gravity of tip section(s)
y rod deflection
g specific weight of rod material

Subscript

t Rod tip location or rod tip section


